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A recently developed method is used for the analysis of structures of planar disordered granular assemblies.
Within this method, the assemblies are partitioned into volume elements associated either with grains or with
more basic elements called quadrons. Our first aim is to compare the relative usefulness of description by
quadrons or by grains for entropic characterization. The second aim is to use the method to gain better
understanding of the different roles of friction and grain shape and size distributions in determining the
disordered structure. Our third aim is to quantify the statistics of basic volumes used for the entropic analysis.
We report the following results. �1� Quadrons are more useful than grains as basic ‘‘quasiparticles’’ for the
entropic formalism. �2� Both grain and quadron volume distributions show nontrivial peaks and shoulders.
These can be understood only in the context of the quadrons in terms of particular conditional distributions. �3�
Increasing friction increases the mean cell size, as expected, but does not affect the conditional distributions,
which is explained on a fundamental level. We conclude that grain size and shape distributions determine the
conditional distributions, while their relative weights are dominated by friction and by the pack formation
process. This separates sharply the different roles that friction and grain shape distributions play. �4� The
analysis of the quadron volumes shows that � distributions, which are accepted to describe foamlike structures
well, are too simplistic for general granular systems. �5� A range of quantitative results is obtained for the
‘‘density of states’’ of quadron and grain volumes and calculations of expectation values of structural properties
are demonstrated. The structural characteristics of granular systems are compared with numerically generated
foamlike Dirichlet-Voronoi constructions.
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I. INTRODUCTION

There has been a growing interest in the application of
statistical mechanics methods to granular systems. Unlike
conventional thermodynamic systems, loosely compressed
granular materials are not in equilibrium unless sufficient
initial agitation is applied to the system �1�. Once the agita-
tion stops the system consolidates into a specific state, which
can be described by statistical mechanics �2�. In generally
porous materials the situation is much less clear since there is
no guarantee that the history of the consolidation of the ma-
terial does not play a role. If it does then equilibrium-based
models will not work. However, the entire science of porous
media is based on the premise that the statistics of a given
block of a particular rock has on average the same structural
characteristics as another block of the same material and of
the same volume, taken from the same area. Otherwise, it
would be pointless to try to derive typical macroscopic prop-
erties, such as permeability. This underlying premise allows
us to use statistical mechanical tools to describe porous me-
dia of similar statistics. It is important, however, to substan-
tiate that this approach is as useful to such systems as it is for
shaken cohesionless granular media.

The statistical mechanical formalism of Edwards is based
on replacing the energy of thermodynamic systems by vol-
ume and the temperature by an analogous quantity—
compactivity �2,3�. The partition function of the formalism

involves only an entropic contribution, i.e., it is the logarithm
of the number of configurations in which the granular mate-
rial can be arranged.

Using the parallels with conventional statistical mechan-
ics, the partition function is

Z =� e−W��q��/X���q��� dq , �1�

where X is the compactivity and W is a function that gives
the volume of the entire system in terms of all the indepen-
dent variables �q� in the system, such as the sizes of the
grains, their orientations, etc. These variables are called the
degrees of freedom because their values in any specific real-
ization determine the statistics of the structure. The entropy
is defined as S=log����V−W�� d�q���, where V is the vol-
ume of the system, � the condition that the configuration is
connected and in mechanical equilibrium, and q� a vector of
all the degrees of freedom that the structure depends on. In
terms of the entropy, the compactivity is defined as X
=�V /�S.

For convenience, �1� is written in terms of a canonical
ensemble, namely, the total number of quadrons �and hence
the overall number of intergranular contacts�, as well as the
number of particles, is constrained to be constant in the en-
semble. Alternatively, if only the number of particles is con-
strained, then a grand canonical ensemble must be used since
the number of quasiparticles—the quadrons—changes from
realization to realization. An interesting question is whether
the canonical ensemble can be used to characterize results of*g.frenkel@imperial.ac.uk
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experiments; that is, to ask whether there are experiments for
which the variation of the mean coordination number per
realization of the granular system is much smaller than its
average over all realizations of the experiment. While there
are experiments that fix the packing fraction of grains �1�, it
is not clear whether there is a close relation between the
density of grains and the coordination number for these ex-
periments. At least two relations are needed to clarify this
issue: between the means and the standard deviations of the
density and the mean coordination number. We are not aware
of derivation of such relations. Nevertheless, since the aim of
this paper is not an explicit statistical calculation but only an
illustration of one with the data that we have, then we con-
sider here only the canonical partition function and leave the
grand canonical for future work.

This entropic approach makes it possible to calculate
structural properties as expectation values. For example, in
porous materials made of consolidated grains, the volume
associated with one grain is

	V
 =
1

Z
� Vg��q��e−W��q��/X���q��� dq , �2�

where the angular brackets denotes an average over an en-
semble of all possible systems.

The initial doubts about the applicability of equilibrium
formalism to these far-from-equilibrium systems has been
put to rest by experimental evidence that there is a reproduc-
ible distribution of density states �1�. Even so, this approach
was slow to catch on because the geometric correlations of
the connected structure made it a major challenge to identify
the relevant degrees of freedom and therefore the phase
space. These problems have been resolved recently, as will
be discussed in more detail below, paving the way to a range
of systematic calculations both in two and in three dimen-
sions �3,4�.

In this paper, we demonstrate the usefulness of the for-
malism to the study of a range of simulated granular aggre-
gates. In particular, we address two issues. One is a system-
atic characterization of the structure of granular materials
and the other is an attempt to provide a fundamental, rather
than phenomenological, understanding of the exact roles that
grain size distributions and friction play in the determination
of the structure. Starting with the characterization of the
granular medium through connectivity and contact networks,
space is tessellated and we identify basic volume elements
called quadrons �3�. These are used to construct the volume
function W in �1� and to investigate the statistics of simulated
systems. The quadrons are also used to demonstrate compu-
tations of expectation values. The formalism is further used
to investigate the structure of the granular systems and to
compare the usefulness of either quadron or grain volumes as
the basic volume elements.

The main results reported in this paper are the following.
�i� The probability density functions �PDFs� of both quadron
and grain volumes are computed. These PDFs are essential to
the construction of the Edwards entropic formalism. �ii� We
find that these PDFs exhibit nontrivial structure. These can-
not be understood by the simple fits practiced in the litera-

ture, which miss essential characteristics of dense granular
packings. �iii� It is shown that the features of the PDF of
quadron volumes stem from the distribution of the number of
cell edges, which we call the cell coordination number. �iv�
The quadron volume PDFs are decomposed into a superpo-
sition of conditional PDFs. We show that the roles of friction
and polydispersity can be understood in the context of these
conditional PDFs. In particular, we demonstrate the clearly
separate roles that grain size distribution and friction have on
the structure. We show that this understanding can come only
from analysis of the quadron volume PDF; the PDF of the
grain volumes mixes the conditional distributions and
washes out the above effects. �v� We find distinct differences
between grain and quadron volume PDFs. Fundamental ar-
guments are presented that establish the latter as the more
useful for entropic characterization.

This paper is constructed as follows. In Sec. II we give a
brief review of the construction of the volume function. In
Sec. III we describe briefly the simulated systems and the
way that we extract the statistics of the quantities that we
wish to analyze. In Sec. IV we present the results of the
various analyses. We conclude in Sec. V with a discussion
and interpretation of the results.

II. CONSTRUCTION OF THE VOLUME FUNCTION

The construction described here has been developed for
granular media �3�. The original construction, as indeed the
entropic formulation, has been mainly limited to marginally
rigid structures �5�, but here we extend the description for
general structures. The idea is to start from the contact net-
work and construct a set of basic volume elements that cover
the system and can be defined in terms of a compact set of
variables, called degrees of freedom. To conform with the
literature, we use in the following the term ‘‘volume’’ to
describe the area of the two-dimensional systems. This is
done in several steps, illustrated in Fig. 1.

�1� Starting from a collection of grains in mechanical
equilibrium, all the inter-granular contact points are identi-
fied.

�2� Around every grain, say g, the contact points are con-
nected by vectors that circulate the grain in the clockwise
direction, Fig. 1. The vectors form polygons around the
grains as well as around the voids that the grains enclose,
circulating in the counterclockwise direction. The polygons
of the voids are denoted henceforth as the cells. Note that
grains with two contacts produce degenerate polygons of two
edges. Grains with fewer than two contact points are me-
chanically unstable and thus ignored. We also ignore rattlers
�6�, which are grains resting only on grains underneath.

�3� Every cell polygon is given an index c
=1,2 , . . . ,Ncell where Ncell is the total number of cells. Note
that every vector can be associated with exactly one grain
and one cell and therefore it can be indexed uniquely, r�gc.
The r network is the set of all the vectors r�gc.

�4� Centroids are defined for every polygon in the system,
around both grains and cells. A centroid is the mean position
vector of the corners of the polygon �the contact points of the

original grains�. A vector, denoted as R� gc, is extended from
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every grain centroid to the centroids of the cells that sur-
round it, e.g., Fig. 1. The network of R vectors is dual to the
r network—every r�gc in the latter corresponds to one vector

R� gc in the former.
�5� Quadrilaterals, named quadrons qgc �3�, are con-

structed, whose diagonals are r�gc and R� gc, e.g., Fig. 1.
The result of this construction is a perfect tiling of the

system—the quadrons cover the entire area seamlessly. This
provides a volume function,

W = �
g,c

Vgc � �
q

Vq,

where Vq�Vgc= 1 / 2
r�gc�R� gc
 is the volume of one quadron.
It has been shown in �3� that this volume function makes

it possible to �i� identify a compact phase space of degrees of
freedom; �ii� take into consideration the geometric correla-
tions explicitly; �iii� calculate explicitly relevant structural
expectation values. It is interesting to note that the most ba-
sic volume units of the structure are the quadrons, not the
grains.

In a system of N grains of mean contact number z̄g, the
volume function appears to depend on all the 2z̄gN vectors

r�gc and R� gc, but these are not all independent. First, all the R
vectors can be expressed as linear combinations of the r
vectors. Second, within the r network, every basic polygon
of vectors �irreducible loop� gives one dependent vector. To
obtain the number of independent vectors, one therefore has
to count these loops. There are N grain polygons and M cell
polygons. To find M, we use Euler’s expression relating ver-
tices, faces, and edges in a two-dimensional �2D� network. In
terms of our variables, this relation reads

z̄gN

2
− z̄gN + �M + N� = 1, �4�

where N is the number of grains and M is the number of
cells. This gives

M = � z̄g

2
− 1�N + 1 �5�

and, subtracting all the dependent vectors, leaves only z̄gN /2
independent vectors. Since every vector has two components
then the phase space consists in total of z̄gN degrees of free-
dom. It is important to note that the number of independent
variables equals exactly the number of quadrons, regardless
of system size. Thus, quadrons are the analogs of quasipar-
ticles in conventional statistical mechanics, a point that we
will return to later. The above counting neglects boundary
corrections, which are small for large systems.

III. SYSTEMS

For our analysis we chose a number of systems. One fam-
ily of systems consists of granular packs, constructed nu-
merically by depositing disks �or dispherical grains� onto a
rectangular container of width L. In these systems, the disk
radii were chosen either from a monodisperse or from a uni-
form probability density. In all samples the average diameter
was chosen to be less than L /30. The discrete element
method �7� was used to simulate particle deposition. Groups
of 100 randomly placed disks were generated above the
packing, and the grains of each group were allowed to settle
down before another group of disks was added. In order to
save computational time, the positions of disks from all but
the three last added groups were fixed. Because these “fro-
zen” disks are several disk diameters below the actual top of
the packing, we assume that their position will not be af-
fected by newly deposited disks. The algorithm for deposi-
tion of dispherical grains is analogous and is described in
detail in �8�. In the simulations, we have varied the inter-
granular friction coefficients within the range �0,57�. The fi-
nite friction coefficient limits the amount of crystallization in
monodisperse systems.

For each choice of friction and size distribution, we have
varied the total number of disks, to check the dependence of
the resultant distributions on system size. We have found that
the statistics of all the quantities that we have measured sta-
bilized when the number of disks exceeded 3000. In particu-
lar, we have established that 40 8000-disk simulations with
the same parameters, but starting from different initial con-
ditions, gave rise to practically the same distribution of quad-
ron volumes. When the number of disks was reduced below
3000 per sample, noticeable differences started to appear be-
tween samples. We therefore set 4000 as the minimum num-
ber of disks per sample.

Altogether, we have analyzed four families of systems.
�1� Monodisperse disks of four different friction coeffi-

cients �=0, 0.36, 0.84, and 57. These values correspond to
angles of friction of 0°, 20°, 40°, and 89°.

FIG. 1. Tessellation of space in general 2D granular packs. In-
tergranular contact points are identified. Grains are represented by
polygons, generated by connecting contact points with vectors that
circulate around the grains in the clockwise direction. Conse-
quently, the vectors circulate around the cells in the counterclock-
wise direction. This network we call the r network. An R vector
network is generated �dashed arrows� which connects the centroids
of the grains to the centroids of their neighboring cells. Quadrons
are the quadrilaterals whose diagonals are the r-R pairs that corre-
spond to the same grain and cell, e.g., rgc-Rgc.
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�2� Polydisperse disks, whose radii were distributed uni-
formly between rmin and 3rmin, and whose friction coeffi-
cients were the same as above.

�3� Dispherical grains, with friction coefficient �=0.47
and 57, corresponding to angles of friction of 25° and 89°. A
grain was made of two rigidly attached disks of equal radii
R. The centers of the disks were separated by variable dis-
tances, ranging within �0.42�0.25�R.

�4� Trivalent foamlike structures generated by a Dirichlet-
Voronoi tessellation as follows. First, Poisson seeding points
were distributed within a rectangular container of width L.
Once all the points have been distributed, a Voronoi diagram
was generated, where a unique cell was constructed around
each point. The vertices generated by the edges of the
Voronoi cells are all trivalent, namely, they connect exactly
three edges. The resulting cellular structure was mapped onto
a granular system using the procedure described in �9�.
Briefly, the mapping generates pseudograins by connecting
the middle of the edges connecting to each of the foam’s
vertices. This allows us to compare directly the statistical
properties of the structures in our granular systems and the
Dirichlet-Voronoi structures—a class of structures for which
there is an extensive literature and which are therefore very
useful for comparison.

IV. ANALYSIS

The analysis of the above structures was carried out, fol-
lowing the procedure outlined in Sec. II. Once the contact
network had been generated, we studied the statistics of
quantities that relate to two types of data: the connectivity of
the structure and the partition of the volume into quadrons or
grains. Below, we report our results, and we discuss them
and their interpretations in the concluding section.

A. Connectivity

The connectivity of a granular pack is arguably the one
most significant factor in determining macroscopic structure-
dependent properties. In the first instance we studied the dis-
tributions of the number of grain contacts and the number of
grains around cells. These quantities are strongly sensitive to
the consolidation dynamics and therefore are key to the un-
derstanding of the effects of the formation of the structure on
macroscopic properties. In Fig. 2�a� we show the PDF of the
number of grain contacts, zg, for all the systems described
above. In Fig. 2�b� we plot the PDF of the number of grains
around a cell, zc, for these systems.

The figures show that, as a general rule, the wider the
distribution of the contact numbers, the narrower the distri-
bution of the number of grains around cells, and vice versa.
This could be best seen in the polydispersed systems. For the
polydispersed disk samples with �=0,0.36,0.84,57, the
standard deviation of grain coordination number is �g
=0.979,0.933,0.926,0.913 and the standard deviation of cell
coordination number is �c=0.54,0.79,1.02,1.21, respec-
tively. For monodispersed packing of disks, crystallization
effects change the above conclusion for very low friction
coefficients. This is in accord with the idea that the number

of grains around a cell is the contact number of the reciprocal
�or dual� network. An extreme manifestation of this relation
can be observed for trivalent foams, where zg=3 for all
grains. The zero width of this PDF corresponds to the broad-
est PDF of zc.

The mean number of quadrons per cell, which is the same
as the number of grains per cell, can be readily found from
relation �5�. In the dual network the values of M and N are
interchanged and therefore from their ratio we find that

z̄g

2
− 1 = � z̄c

2
− 1�−1

, �6�

which gives

z̄c =
2z̄g

z̄g − 2
. �7�

The overbars in Eqs. �6� and �7� denote averages over the
volume of the system. In granular systems, the smallest co-
ordination number of grains is constrained by the fact that
the system needs to be mechanically stable. This is the isos-
tatic limit for which all forces can be deduced from the force
and torque balance equations. In the isostatic limit z̄g=3 for
infinitely rough grains, z̄g=6 for smooth noncircular grains,
and z̄g=4 for smooth circular grains �10�. The corresponding
mean numbers of quadrons per cell are 6, 3, and 4. Figure 2
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FIG. 2. �Color online� Probability density functions of the grain
coordination number �a� and cell coordination number �b� for all the
systems studied in this paper. Note that z̄g decreases with increasing
friction, while z̄c increases, in agreement with Eq. �7�. The most
probable value of z̄c is 3 in all the granular systems. This is in
contrast with the Voronoi cellular system, where the most probable
value of z̄c is 6.
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is in good agreement with these considerations.
The large-value tail of the PDF of zg is sensitive to the

grain size distribution. In the monodisperse samples, the
maximal value of zg can be 6 for obvious reasons. This num-
ber increases as the ratio between the largest and smallest
radii gets further from unity, and it can be readily shown that

�zg�max = 	� rmax

rmin
+ 1� , �8�

where 3
	
�, depends weakly on rmax /rmin. Note that
very broad size distributions give rise to extremely large val-
ues of zg. In our polydisperse samples, the distribution of
radii is between rmin and 3rmin, giving �zg�max�12.

Because of the duality relation between the grain and cell
structures, similar considerations apply to the PDF of zc but
with some differences. One is that expression �8� does not
apply and the corresponding relation for cells is much more
difficult to formulate. Another is that the smallest value of zc
cannot go below 3. This is in contrast to grains, which can be
in equilibrium in contact with as few as two neighbors.

B. Volume partition

The partition of the volume is essential to the character-
ization of porous structures. In particular, the partition into
elemental volumes is a key to the entropy-based statistical
formalism described above. As can be seen from expression
�1�, the elemental units in the volume function can be either
the quadrons or the grains. For completeness and to assess
the advantages and disadvantages of either description, we
have analyzed the volume distributions of both. First, we
calculated the volume of every quadron, defined above. Then
we obtained the volume associated with every grain by sum-
ming the volumes of the quadrons around it, Vg=�c=1

zg Vgc. In
Fig. 3 we plot both the quadron and grain PDFs for foam and
for the polydispersed disk systems.

In the samples of Figs. 3�a�–3�d�, the granular systems are
identically polydisperse with a uniform disk size distribution,
but with different friction coefficients. Commonly, partitions
of space by traditional tessellations, such as the Dirichlet-
Voronoi tessellation, have been shown to give rise to � dis-
tributions of cell volumes �11–14�. Therefore, we have tried
to fit � distributions to the quadron volume PDF,

P�Vq� =
ba

��a�
Vq

a−1 exp�− bVq� , �9�

under the assumption that Vq can be extrapolated to Vq=0.
For this fit we approximated the upper bound on Vq as infi-
nite, Vq→�. To compare the quality of the fit, Fig. 3�e�
shows the PDF of a Dirichlet-Voronoi sample that was pro-
duced using the aforementioned Poisson seeding process.
The PDF is fitted excellently with the � distribution, in
agreement with previous works �15,16�.

The PDFs of the grain-associated volumes are shown on
the right-hand side of Figs. 3�a�–3�e�. The differences be-
tween the grain and quadron PDFs are clearly visible in all

these systems. To quantify these differences, we tried to fit
the grain PDF with the � distributions as well. The fits of the
PDFs of Vg are consistently poorer than the fits of Vq: the
uncertainties in the parameters a and b for the former are two
to three times larger than for the latter and the tails of the
grain distributions are especially poorly fitted. In addition,
the value of the parameter a is markedly different between
the fits to the grain and quadron PDFs. The importance of
this observation is discussed in the next section.

Expectation values of desired properties can be calculated
analytically, from the partition function Eq. �1�, once a den-
sity of states is given. Assuming that the quadrons are not
correlated, the density of states is a product of the single-
quadron PDFs P��Vqi

��=�iP�Vqi
�, and the partition function

can be rewritten as

Z = Zq
Nq = �� e−Vq/XP�Vq�dVq�Nq

, �10�

where Nq is the total number of quadrons in the system.
Using a � distribution for Vq as an illustration, the expecta-
tion value of the nth moment of the quadron volume is

	Vq
n
 =

� e−Vq/XVq
nP�Vq�dVq

Zq
=

��n + a�
��a��b + 1/X�n . �11�

It is interesting to note that the above functional form of �11�
has been used in the literature for the cell size distribution of
Dirichlet-Voronoi systems �15�.

Note that both Vq and Vg in Fig. 3 have been normalized

by the mean volume associated with the sample’s grains, V̄g.
This has been done for comparison between the quadron and
grain PDFs, but it has the disadvantage that it washes out
some very interesting features. The point is that the mean
volume associated with a grain is different for each sample,
since the volume associated with a grain, Vg, is the sum over
its quadrons, and the porosity is different for different
samples. Thus, to compare the peak position and width of
curves of different samples having the same grain distribu-
tion but different friction coefficients, we need to use a com-
mon normalization. Indeed, two interesting features can be
observed when comparing systems having different friction,
but that are otherwise identical, Figs. 3�a�–3�d�. To highlight
these features, we replot in Fig. 4 the quadron PDFs of Figs.
3�a�–3�d�, normalized by their common mean disk size �un-

like V̄g, the mean disk size is just the mean of the volume of
each disk �r2, which depends only on the size distribution of
the disks�. The figure shows a trend of widening of the quad-
ron PDF as friction is increased. This is because, on forma-
tion, higher friction coefficients lead to less dense granular
packs, which have higher values of the compactivity X. This
feature is especially clear in disk systems as �→0, which
tend to form polycrystals. In the limit �=0 the distribution
should approach a � function. To demonstrate this we give
here the values of the mean and the standard deviation for
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each curve. The four curves in Fig. 4 have friction coeffi-

cients of �=0,0.36,0.84,57, mean quadron volumes of V̄q
=0.223,0.260,0.275,0.290, and standard deviations of �
=0.11,0.13,0.15,0.16, respectively. Another interesting fea-
ture is that the peak of the PDFs hardly changes position
over the entire friction range, regardless of the aforemen-
tioned widening. Interpretation of this feature will become
clear in view of the discussion in the next paragraph.

A close scrutiny of the quadron PDF, found in Figs.
3�a�–3�d�, shows that, although the � distribution appears to
give a reasonable description of the statistics, it misses some
of the fine features of the distributions. To understand this
discrepancy and the origin of these features, it is convenient
to focus on the system of very rough monodisperse disks—
arguably the simplest of the granular systems. We have de-
composed the PDF of the quadron volumes, P�Vq�, into the
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FIG. 3. Probability density
functions of quadron volume �left�
and grain volume �right� for rep-
resentative samples: �a�–�d� poly-
dispersed systems of disks with
increasing friction coefficients �
=0, 0.36, 0.84, and 57, respec-
tively; �e� Voronoi foam. Unlike
the Dirichlet-Voronoi foam the
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disk samples show nontrivial
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The figures are fitted with a � dis-
tribution. As seen, the � distribu-
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of �a�–�d� and especially the evi-
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PDFs. These are quantified by the
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a and the uncertainty.
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conditional PDFs P�Vq 
zc�, where zc is the number of grains
that surround the cell where the quadron q resides. In Fig.
5�a� we plot these conditional PDFs alongside P�Vq�. It
shows clearly that the features of P�Vq� originate directly
from the conditional PDFs. The significance of this observa-
tion will be discussed in the concluding section.

In Fig. 5�b�, the disphere sample shows peaks and shoul-
ders that preclude the simplified � distribution fit and support
the decomposition of the PDF into conditional probabilities
of Zc. Note also the broadening of the peaks in Fig. 5�b��I� in
comparison with Fig. 5�a��I�. This is due to the distribution
of orientations of the dispheres. Both figures exhibit large
differences between the PDFs of the quadron and grain vol-
umes.

The apparent robustness of the peak structure in Fig. 5
prompts us to explore this issue further, and we focus atten-
tion on the conditional PDFs P�Vq 
zc�. These are the condi-
tional probability densities that quadrons residing in cells of
coordination number zc have volumes that lie between Vq
and Vq+dVq. We observe a significant result: the conditional
PDFs are independent of friction. Figure 6 shows the first
three peaks for two disk systems with friction coefficients
�=0.18 and 0.84. Note that the PDFs fall on top of one
another although the distributions of zc are different between
them. In particular, for the former the maximal coordination
number is zc=6 and for the latter it is zc=9. On reflection, it
is plausible that the independence of the conditional prob-
abilities of friction is a general property of granular packs
and that our observation may hold for any distribution of
grain shapes. This is because, given a grain shape and size
distribution, a conditional PDF depends only on the number
�or density� of ways that exist to arrange exactly zc grains to
close one loop. If all these configurations occur with equal
probability during the formation of the structure then this
arrangement is independent of �.

V. CONCLUSIONS AND DISCUSSION

In this paper we have presented statistical analyses of sev-
eral families of granular systems and of Dirichlet-Voronoi

foams in 2D. Our main interests were �i� to demonstrate the
use of a recent structural characterization method and to de-
termine the relative merits of the use of either quadrons or
grains as basic volume elements for the Edwards entropic
formalism; �ii� to apply these alternative descriptions to the
analysis of the structure; �iii� to use the method to gain a
fundamental understanding of the effects of grain shapes and
intergranular friction on the statistics of the structure. Both
connectivity, via grain and cell coordination numbers, and
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the partition of the system volume, by quadrons and grains,
have been studied.

Our main results are the following. �i� There are distinct
differences between the volume PDFs of quadrons and of
grains, favoring the use of quadrons as the basic volume
elements for the entropic formalism; �ii� we find that the
PDF’s of quadron volumes have nontrivial peaks and shoul-
ders, which we have traced directly to the distribution of cell
coordination numbers zc; �iii� we make a clear separation
between the effects of the grain size and shape distribution
and of friction on the system structure.

To analyze the structure we initially studied the distribu-
tions of the grain and cell coordination numbers. This pro-
duced several expected results—the mean cell coordination
number and size increase with friction while the mean grain
coordination number decreases. This is in agreement with
our proposed relation �7� between the mean coordination
numbers of grains, z̄g, and of cells, z̄c. We further observe
that, in all the granular systems that we have studied, the
most probable coordination number of cells for any friction
coefficient was zc=3. Although not surprising, these results
are useful for the discussion of our main result �ii�.

Next we studied the distributions of grain and quadron
volumes. It has been shown that, in two dimensions, the
number of quadrons coincides with the number of degrees of
freedom �3� and consequently that these variables can be
chosen to span the phase space. As such, quadrons are the
quasiparticles in the entropic formalism—the equivalent of
particles in traditional statistical mechanics. In other words,
these are the variables to integrate on in the partition func-
tion. Yet, throughout the literature, it is customary to use the
distribution of grain volumes for statistical analyses �12,13�,
and in some cases also for entropic analyses �2,17,18�. Not
much attention has been given to the question of whether the
two distributions can be used interchangeably. Our results
here suggest that they cannot. On a fundamental level, the
number of degrees of freedom is equal to the number of
quadrons and not to the number of grains, which suggests
that these are indeed the natural quasiparticles to use. A pos-
sible justification for using the grain volumes instead for the
entropic analysis would be if the two PDFs were similar. One
of the main results of this paper was a test of this issue.
Following conventional wisdom from the literature �12–14�,
we tried to fit the quadron and grain volume PDFs of poly-

dispersed disks with � distributions. While both fits are less
than satisfactory, the fit parameters of the grain volume PDFs
have errors three times larger. This supports direct visual
observations that the two distributions are markedly different
and therefore that the common use of the grain volume dis-
tribution is misconceived.

This is not to say that the grain volumes cannot be used as
the integration variables in the partition function. It is pos-
sible in principle if their probability density is known. How-
ever, for that, one has to integrate over the N�z̄g−1� variables
that are the difference between the true dimensionality of the
phase space and the number of grains. The problem with this
is that, even if the integration were possible to carry out
practically, it introduces correlations between grain
volumes—correlations that need to be taken into account ex-
plicitly. Such correlations preclude, a priori, low-level ap-
proximations such as independence of variables. In contrast,
such approximations are not fundamentally wrong when
quadrons are used as the basic variables. Thus, the use of
quadrons is preferable also for the computation of the parti-
tion function and expectation values of structural properties.

Concerning the integration over quadrons, note that, while
the quadron volumes are independent, they can nevertheless
be correlated. This is no different in thermal systems, where
the degrees of freedom are, for example, particle positions
and momenta, and where correlations can exist between par-
ticles due to interactions. It is because of their independence
of one another that quadrons can be used as degrees of free-
dom. To analyze a system of correlated degrees of freedom,
a model is required for the correlations, and this is when
approximations come in. Since there are no models so far for
interacting quadrons—an interesting and challenging prob-
lem in itself—we have used the simplest possible approxi-
mation, the ideal quadron gas, wherein quadron volumes are
uncorrelated, and which is the analog of the conventional
ideal gas model.

Beyond the fundamental question of the suitability for
entropic description, we have looked into the features of the
quadron volume PDFs and their dependence on system pa-
rameters. It had been expected that pack structures would
depend on geometrical properties of the grains, such as shape
and size distributions, on physical properties, such as fric-
tion, and on the formation process of the structure. However,
the exact relations between these and the structure have
never been understood on a fundamental level. Rather, there
are many empirical observations in the literature that could
not be modeled theoretically in any systematic manner. Our
results here make a significant step in this direction, as we
now proceed to discuss.

Our investigation of the PDFs of the quadron and grain
volumes has both uncovered nontrivial structures in the form
of shoulders and peaks and shown that the quadron and grain
volume PDFs are quite different. As mentioned, neither the
quadron nor grain volume PDFs of polydispersed disks are
described well by � distributions. Following the idea that the
quadrons may be the fundamental structural elements, rather
than the grains, we focued on a detailed study of the quadron
volume PDFs, P�Vq�. We have discovered that these features
can be traced to conditional probabilities of cell volumes
given coordination numbers, P�Vq 
zc�. A striking observation
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is that the position and the form of each conditional prob-
ability P�Vq 
zc� are independent of friction and depend only
on the distribution of grain sizes. Friction has been found to
control only the distribution of zc and hence the weights of
the conditional probabilities within the total PDFs P�Vq�.
Combining this observation with the fact that z̄g depends
directly on friction shows that expression �7� between the
mean coordination numbers of grains z̄g and of cells z̄c re-
lates friction directly to structure.

Furthermore, the dependence of P�Vq 
zc� only on grain
size distribution can be extended readily to the distribution of
grain shapes—the number �or density� of ways to partition a
cell of zc sides into quadrons is determined predominantly by
the shapes of the grains around it. In contrast, friction gov-
erns the relative frequency of occurrence of cells of zc sides
through the formation process of the granular pack. This ar-
gument further suggests that, in addition to friction, any fac-
tor that affects the formation of the pack, such as gravity,
density of deposition, and inertial effects, determines the
relative weights of the conditional probabilities. Thus, there
is a clear separation between the effects of friction and the
formation process and of grain shape characteristics on the
structure. This observation is quite significant in view of the
extensive work in the literature devoted to understanding
these issues.

The insight from our results implies that it may be pos-
sible to make quantitative predictions about the exact shape,
position, and width of given the shape characteristics, but
such calculations are not straightforward theoretically, except
for very simple cases �see below�. For example, the orienta-
tion of the dispheres in Fig. 5�b� broadens the peaks, in com-
parison to the peaks of equal-sized disks found in Fig. 5�a�,
and blends them together. The size distribution of grains also
broadens the peaks and mixes them up �Figs. 3�a�–3�d��. We
expect that wide polydispersity of grain sizes would wash
out some of the peak structure and the fine details. Compar-
ing the cell coordination number of cells for the monodis-
persed and polydispersed disks and the dispheres reveals that
there may still be minor effects of the shape characteristics
on the weights as well, but this issue requires more detailed
investigation.

The above insight suggests several possible experiments.
�i� It would be interesting to test the hypothesis that the
process of pack formation affects the structure in a similar
way to friction, i.e., by modifying the relative weights of the
P�Vq 
zc�’s. This could be tested experimentally on a range of
structures where the grain size and shape distributions are
kept fixed while friction and shaking are varied, and vice
versa. �ii� The difference between the effects of shape char-
acteristics and other factors, such as friction and different
formation processes, suggests guidelines for the study of
granular systems. For example, with a fixed distribution of
grain shapes, we expect unchanged peak forms as discussed
above. Changing then the nonshape parameters, e.g., friction
or shaking protocols, would make it possible to isolate the
effects of these parameters on packing fractions within the
entropic formalism. Conversely, it is possible to fix physical
properties and vary grain shape distributions to investigate
the effects on peak shapes, a problem that is of essential
importance in mining technology �20�. We believe that such

experiments, combined with our analysis here, will provide
better understanding of the direct effects of friction on the
structure, and therefore on the porosity, of granular systems.
Further combination of the analysis presented here with the
entropic formalism should provide a powerful way to clas-
sify and characterize structures of granular systems.

The absence of data on the PDF of quadron volumes led
to the use of simplistic forms in the literature of the density
of states �2,3,18,19�. Therefore, the quantitative results ob-
tained here form a much-needed link between real granular
materials and the analytical studies based on compactivity
and the entropic formalism. Our results for the rich structure
of the PDFs of quadron and grain volumes and for the rela-
tions between shape characteristics, formation protocols, and
pack structural statistics suggest that the practice of a heuris-
tic fit of the total PDF by one � function is too naive. A more
appropriate fit would be of the various peaks in the PDFs
using the relations to cell statistics as outlined in this paper.
This can be done in a number of ways, using a � �14� or
Gaussian fit to the peaks. Unfortunately, this requires a large
number of fitting parameters. For example, if we assume that
the peaks are Gaussian, then for each peak we have to fit
three parameters: the position �mean�, the width, and the
height. Even in our systems, which have a relatively limited
range of cell coordination numbers 3
zc
9; this results in
about 20 parameters. In contrast, the Voronoi cells produced
by a Poisson process of unit density are a special case be-
cause the PDFs of cell volumes with a specific coordination
number zc are � distrributed with a=zc and b=1 �14�. This
leaves only one parameter to fit per peak, its height, which is
related to the occurrence probability of a zc-sided cell. How-
ever, it is doubtful that this simplification can be extended to
more general grain packings.

In view of these difficulties, it is useful to try to under-
stand the shape of the basic peaks from first principles. This
is feasible in disk systems for zc=3, for example. In these
systems zc=3 corresponds to cells enclosed within three
circles and, if we know the polydispersity of the radii, it is
possible to calculate the distribution of the volumes of the
three quadrons that such a cell gives rise to. In particular, in
monodisperse systems this would be exactly a � function. A
similar analytical calculation for the peak corresponding to
zc=4 in disk systems is probably also possible. But even for
the disk systems these calculation become increasingly in-
volved as zc increases. For nondisk systems such calculations
are prohibitively difficult and it is best to resort to numerical
evaluations. Nevertheless, it is probably possible to obtain
estimates for the positions of the peaks, using simplifying
assumptions. We shall not continue along this line here be-
cause our aim has been only to attract attention to this phe-
nomenon and to the understanding of the PDFs.

The weights of the peaks cannot be addressed using the
above analysis because it involves the relative occurrence
probabilities of different values of zc and these weights must
be strongly sensitive to the physical properties of the system,
especially friction. For example, in perfectly smooth sys-
tems, we expect all cells to have essentially three edges, zc
=3, which obviates the question of the relative weights. With
increasing friction, cells of more edges occur. Indeed, one of
our main results is that the relation between � and the oc-
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currence probability of zc is a key to understanding the effect
of friction on the structure of granular systems.

Finally, it is important to emphasize that the fine details of
the PDFs are easier to detect and understand by choosing the
quadrons as the basic volume elements, rather than grains.
This is because the volume associated with any grain con-
sists of several quadrons, each belonging in principle to a
different cell. Therefore, grain volume distributions mix dif-
ferent peaks and make them difficult to detect. This is an-

other advantage of analyzing the quadron, rather than grain,
volumes.
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